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Details of the Convex Relaxation
In this section, we provide the details of the convex relaxation for achieving problem (5). Problem (4) in the main paper is a
mixed integer programming problem and there are a large amount of feasible τ ’s. Thus it is hard to solve. We handle it via a
convex relaxation (Tan et al. 2016). To achieve this, we transfer the inner problem of (4) w.r.t. x, ξ and z into the dual form.
Thus we have the following proposition.
Proposition 2. By introducing dual variables α ∈ Rn and β ∈ Rl to the two constraints, respectively, regarding to the inner
problem, problem (4) can be transfered to

min
τ∈Λ

max
α
− 1

2
‖|α‖22 + αTy

s.t. ATα = DTβ, ‖diag(τ )β‖∞ ≤ λ
(13)

For any τ ∈ Λ, there is α∗ = ξ∗ at the optimality of the inner problem.
The proof can be found below.
The values of the components in β are bounded by ‖diag(τ )β‖∞ ≤ λ. Thus α is bounded because of the equality constraint

ATα = DTβ. Without loss of generality, we give a large positive number h and let α ∈ [−h, h]n. We then define a feasible
compact domain of α as A = ∩Aτ with Aτ = {α|ATα = DTβ, ‖diag(τ )β‖∞ ≤ λ,α ∈ [−h, h]n} w.r.t. any τ and

φ(α, τ ) =
1

2
‖α‖22 −αTy, α ∈ Aτ . (14)

By applying the minimax inequality in (Boyd and Vandenberghe 2004), we have

min
τ∈Λ

max
α∈A

−φ(α, τ ) ≥ max
α∈A

min
τ∈Λ

−φ(α, τ ). (15)

According to (15), maxα∈A minτ∈Λ−φ(α, τ ) is a lower bound of problem (13). By introducing a new variable θ ∈ R, we
can achieve a convex relaxation of problem (13), a quadratically constrained linear programming (QCLP) problem (Pee and
Royset 2011):

min
α∈A,θ∈R

θ, s.t. φ(α, τ ) ≤ θ,∀τ ∈ Λ.

Relying on this relaxation, we arrive problem (4) in QCLP formulation in the main paper.

Proof of Proposition 2
Proof. For any fixed τ , we have the inner problem as

min
x,ξ,z

1

2
‖ξ‖22 + λ‖z‖1

s.t. ξ = y −Ax, Dx = (z� τ ),

(16)

By introducing Lagrangian dual variables α ∈ Rn and β ∈ Rl to the equality constraints, the Lagrangian function of the inner
problem (16) is:

L(x, z, ξ,α,β) =
1

2
‖ξ‖22 + λ‖z‖1 + αT(y −Ax− ξ) + βT(Dx− diag(τ )z) (17)
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We then minimize L(x, z, ξ,α,β) w.r.t. ξ, x and z, respectively:

min
ξ

1

2
‖ξ‖22 −αTξ + αTy = −1

2
‖α‖22 + αTy,

min
x
−αTAx + βTDx =

{
0, if ATα = DTβ,
−∞, otherwise,

min
z

λ‖z‖1 − βTdiag(τ )z =

{
0, if ‖diag(τ )β‖∞ ≤ λ,
−∞, otherwise,

We obtain α = ξ at the optimum when optimizing L w.r.t. ξ. By substituting above into L(x, z, ξ,α,β), we obtain the dual of
the inner problem

max
α
− 1

2
‖|α‖22 + αTy

s.t. ATα = DTβ, ‖diag(τ )β‖∞ ≤ λ

This completes the proof.

Proof of Proposition 1
Proof. For simplifying the proof, we first reformulate problem (9) by introducing ξ = y −Ax, subvector zSc w.r.t. Sc with
zSc = 0, and one constraint (Dx)Sc = 0. Problem (9) then can be equivalently reformulated as

min
x,ξ,z

1

2
‖ξ‖22 + λ‖zS‖1,

s.t. ξ = y −Ax, zSc = 0,

(Dx)S = zS, (Dx)Sc = 0.

(18)

Following that, before proving Proposition 1, we provide the following lemma.

Lemma 2. Let µ ∈ Π = {µ :
∑t
i=1 µi = 1, µi ≥ 0,∀i,µ ∈ Rt}, problem (18) can be solved by the following minimax

problem:
min
µ∈Π

max
α∈A

−
∑

τi∈Λt

µiφ(α, τi). (19)

Proof. By introducing the dual variable µi,∀i ∈ [t] to the t constraints corresponding to Λt, the Lagrangian function of (6) is
L(α, θ,µ) = θ −

∑t
i=1 µiφ(α, τi). By letting the derivatives w.r.t. θ be zero, we can obtain

∑t
i=1 µi = −1 at the optimum.

Furthermore, we can exchange the order of the max and min operators based on the minimax theorem (Sion 1958). This
completes the proof.

Because of the assumption that that there is no overlapping among Ci’s and
∑t
i=1 µi = 1, problem (19) can be reformulated

as:

max
α
− 1

2
‖|α‖22 + αTy

s.t. ATα = DTβ, ‖diag(τi)β‖∞ ≤ λ,∀τi ∈ Λt

(20)

In problem (18), zSc is constrained zSc = 0. Based on the assumption that St = ∪ti=1Ci and there are no overlapping
elements among Ci’s, we have ‖zS‖1 =

∑t
i=1 ‖zCi

‖1 and (Dx)Ci
= zCi

,∀i ∈ [t]. By focusing on the subvector (Dx)S and
zS, the problem (9) can be rewritten as

min
x,ξ,zS

1

2
‖ξ‖22 + λ

∑t

i=1
‖zCi
‖1

s.t. ξ = y −Ax, (Dx)Sc = 0,

(Dx)Ci
= zCi

,∀i ∈ [t].

(21)

By introducing Lagrangian dual variables α and β, the Lagrangian function of the inner problem (21) is:

L(x, zS, ξ,d,α,β) =
1

2
‖ξ‖22 + λ‖z‖1 + βT

Sc(Dx)Sc + αT(y −Ax− ξ) +
∑t

i=1
βT
Ci

((Dx)Ci
− zCi

),



where βC,∀i ∈ [t] and βSc are subvectors of the β to corresponding constraints. To derive the dual form, we minimize
L(x, zS, ξ,d,α,β) w.r.t. x, ξ and zCi ,∀i:

min
ξ

1

2
‖ξ‖22 −αTξ + αTy = −1

2
‖α‖22 + αTy,

min
x
−αTAx + βT

S(Dx)S + βT
Sc(Dx)Sc =

{
0, if ATα = DTβ,
−∞, otherwise,

min
zCi

,∀i

∑t

i=1

(
λ‖zCi

‖1 − βT
Ci

zCi

){
0, if ‖βCi

‖∞ ≤ λ,∀i ∈ [t]
−∞, otherwise.

By subsisting the above into the Lagrangian function, we prove that problem (20) is the dual form of problem (21), and there is
α∗ = ξ∗ at the optimum. Hence, the subproblem (6) can be addressed by solving (9), and there is α∗ = ξ∗ and ξ∗ = y−Ax∗

at the optimum. This completes the proof.

Proofs for the Convergence Analysis
Proof of Lemma 1
Proof. According to definition of problem (5) and subproblem (6), we have

θ∗ = min
α∈A

max
τ∈Λ

φ(α, τ )

and θt = min
α∈A

max
τ∈Λt

φ(α, τ ).
(22)

For any fixed α, we have maxτ∈Λt
φ(α, τ ) ≤ maxτ∈Λ φ(α, τ ), then

min
α∈A

max
τ∈Λt

φ(α, τ ) ≤ min
α∈A

max
τ∈Λ

φ(α, τ ), (23)

which means θt ≤ θ∗. Furthermore, as t increases, the size of the subset Λt is increasing monotonically, so {θt} is monotoni-
cally increasing. The proof is completed.

Proof of Theorem 1
For convenience, we first define

ϕt = min
i∈[t]

(max
τ∈Λ

φ(αi, τ )). (24)

Furthermore, to complete the proof, we first introduce the following lemma.

Lemma 3. Let (α∗, θ∗) be the global optimal solution of (5) in the main paper, and {ϕt} is corresponding to a sequence
{αt, θt} generated by Algorithm 1. There is ϕt ≤ θ∗, and the sequence {ϕt} is monotonically decreasing.

Proof. For ∀i, (αi,maxτ∈Λ φ(αi, τ )) is the feasible solution of (5). Then θ∗ ≤ maxτ∈Λ φ(αi, τ ) for ∀i ∈ [t]. Thus we have

θ∗ ≤ ϕt = min
i∈[t]

(max
τ∈Λ

φ(αi, τ )), (25)

which shows that, with the increasing iteration t, {ϕt} is monotonically decreasing.

Then we conduct the proof for Theorem 1 in the main paper.

Proof. We measure the convergence of the MPGL via the gap between the sequence {θt} and {ϕt}. Since T <∞, Algorithm
1 can stop after finite number of iterations. Assume in the t-th iteration in Algorithm 1, there is no update of Λt, i.e. τt ∈ Λt

and Λt+1 = Λt. There will be no update of α, i.e. αt+1 = αt. Following that, we have

min
α∈A

max
τ∈Λ

φ(αt, τ ) = min
α∈A

max
τ∈Λt

φ(αt, τ ) = θt

and ϕt = min
i∈[t]

max
τ∈Λ

φ(αi, τ ) ≤ θt.
(26)

According to Lemma 1 in the main paper and Lemma 3 above in this supplementary material, we have θt ≤ θ∗ ≤ ϕt, thus
θt = θ∗ = ϕt and {αt, θt} is the global optimum of problem (5) in the main paper.
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Figure 3: Visual quality comparison of image deconvolution on Cameraman.

More Results on Image Deconvolution
In this section, we show more image deconvolution results for visual comparison. The recovered images in Figure 3, 4, 5 and
6 are corresponding to the images measured in Table 2. The images x∗ and y are the ground truth image and the input blurry
image, respectively. As shown in the results, the proposed MPGL recovers sharper details and clearer background. And there is
less ringing artifacts and unnatural textures in our results, which induces the high performance on numerical measurements in
Table 2. Conversely, the results of other methods suffer from ringing artifacts and/or over smoothness. Specifically, because of
the large motion blur and noise in the input image y and the periodic boundary assumption, the results of BM3D and FTVd are
severely affected by the ringing artifacts.
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Figure 4: Visual quality comparison of image deconvolution on House.
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Figure 5: Visual quality comparison of image deconvolution on Lena.
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Figure 6: Visual quality comparison of image deconvolution on Pepper.


